12πV0M(P0+MgA)A2γ
12π√A2γ(P0+MgA)MV0
12πAγ(P0+MgA)V0M
12π√MV0Aγ(P0+MgA)
Let the piston be displaced by small amount X and the increase in pressure be Δp.Initial pressure P1=P0+MgA Volume V1=V0
For adiabatic process, PVγ = constant
(P0+MgA)V0γ=(P0+MgA+Δp)(V0-Ax)γ
Since x is small, we can use binomial approximation:
(1+x)n≈1+nx for small x
(P0+MgA)V0γ=(P0+MgA)(1-Ax/V0)γ(1+Δp/(P0+MgA))
(P0+MgA)V0γ=(P0+MgA)(1-γAx/V0)(1+Δp/(P0+MgA))
Ignoring higher order terms, we have:
1=1-γAx/V0+Δp/(P0+MgA)
Δp=γ(P0+MgA)x/V0A
Force = pressure × area = AΔp = γ(P0+MgA)x/V0
The restoring force is proportional to the displacement x, hence it is SHM.
Restoring force F = - γ(P0+MgA)x/V0
Comparing with F = -kx, we have k= γ(P0+MgA)/V0
Frequency ω=√(k/m)=√(γ(P0+MgA)/mV0)
ω=1/2π√(γ(P0+MgA)/MV0)=1/2π√(Aγ(P0+MgA)MV0)
Therefore, the frequency is 1/2π√(Aγ(P0+MgA)MV0)